C-H Bond Activation by Cobalt(I) Macrocycles: Rapid H/D Exchange between Macrocycle and **Acetonitrile Solvent**

Etsuko Fujita' and Carol Creutz'

Chemistry Department, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000

Received November 30, 1993

Despite extensive studies of proton-transfer thermodynamics and kinetics in acetonitrile solution,¹ proton exchange between solute and solvent has rarely been encountered.² Here, rapid (20-min $t_{1/2}$ at room temperature) proton exchange between the N-H groups of a cobalt(I) macrocycle and CD₃CN solvent is reported. The reaction is anomalously rapid for a "simple" protontransfer process and may signal reactivity of the metal center toward C-H activation.

Tetraazamacrocyclic complexes of cobalt and nickel catalyze the electrochemical³⁻⁵ and photochemical reduction of H_2O^6 and CO_2 ^{4,7} While the binding of CO_2 to low-spin d⁸ CoL⁺ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11diene) has been characterized in organic solvents⁸⁻¹¹ and in water,^{12,13} the highly nucleophilic CoL⁺ complex^{14,15} has itself been less well characterized because of its high reactivity.

Immediately following preparation of 0.07-0.09 M solutions of Co^IL⁺ by⁹ sodium amalgam (Na-Hg) reduction of anhydrous rac-Co¹¹L(ClO₄)₂ in CD₃CN, the macrocycle $v_{\rm NH}$ (3201 cm⁻¹) and ν_{C-N} (1571 cm⁻¹) bands of perprotio Co^IL⁺ lie at their usual positions, as shown in Figure 1. Over the next 1 h H/D exchange of the N-H with the solvent is observed: the $v_{\rm NH}$ intensity decreases, $\nu_{C=N}$ shifts to 1556 cm⁻¹, and weak bands appear at 1650 cm⁻¹ and ~2400 ($\nu_{\rm ND}$) cm⁻¹.¹⁶ The decrease of the 3201-

- Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45-92
- For hydroxide-ion catalyzed H/D exchange of acetonitrile with water, the bimolecular rate constant 3×10^{-5} M⁻¹ s⁻¹ has been estimated for (2) C. Reitz, O. Z. Phys. Chem. A 1939, 183, 371. Bonhoefer, K. F.; Geib, K. H.; Reitz, O. J. Chem. Phys. 1939, 7, 664.
 Fisher, B.; Eisenberg, R. J. Am. Chem. Soc. 1980, 102, 7361.
 Tinnemans, A. H. A.; Koster, T. P. M.; Thewissen, D. M. W. H.; Mackor, Churcher Churcher Chem. Phys. 1020209.
- A. Recl. Trav. Chim. Pays-Bas 1984, 103, 288.
 (5) Beley, M.; Collin, J.-P.; Ruppert, R.; Sauvage, J.-P. J. Am. Chem. Soc.
- **1986**, *108*, 7461. (6) Brown, G. M.; Brunschwig, B. S.; Creutz, C.; Endicott, J. F.; Sutin, N.
- J. Am. Chem. Soc. 1979, 101, 1298. Grant, J. L.; Goswami, K.; Spreer, L. O.; Otvos, J. W.; Calvin, M. J.
- (7)Chem. Soc., Dalton Trans 1987, 2105.
- Fujita, E.; Szalda, D. J.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1988, 110, 4870-4871
- (9) Fujita, E.; Creutz, C.; Sutin, N.; Szalda, D. J. J. Am. Chem. Soc. 1991, 113, 343-35
- (10) Schmidt, M. H.; Miskelly, G. M.; Lewis, N. S. J. Am. Chem. Soc. 1990, 112, 3420-3426
- (11) Summers, J. S. Ph.D. Thesis, Georgia Institute of Technology, 1989.
 (12) Creutz, C.; Schwarz, H. A.; Wishart, J. F.; Fujita, E.; Sutin, N. J. Am.
- (12)Chem. Soc. 1989, 111, 1153-4. (13) Creutz, C.; Schwarz, H. A.; Wishart, J. F.; Fujita, E.; Sutin, N. J. Am.
- Chem. Soc. 1991, 1/3, 3361-3371. Vasilevskis, J.; Olson, D. C. Inorg. Chem. 1971, 10, 1228. Tait, A. M.; Hoffman, M. Z.; Hayon, E. J. Am. Chem. Soc. 1976, 98,
- (15)86-93.

Figure 1. Infrared spectrum of Co^IL⁺ prepared from N-rac-Co^{II}L²⁺ (0.09 M, 0.5-mm path length) in CD₃CN as a function of time. Top: Both $v_{\rm NH}$ and $v_{\rm CH}$ bands decrease in intensity with time because of H/D exchange with the solvent. The spectra were obtained 15, 23, 31, 49, and 89 min after solution preparation. The 3192-cm⁻¹ peak is due to the solvent. Center: C-H/C-D exchange is implicated by (1) the shift of $\nu_{\rm CN}$ to lower energy, (2) the decrease of $\delta_{\rm CH}$ intensity in the 1320–1200cm⁻¹ region, and (3) the increase in δ_{CD} intensity in the 1500–1320-cm⁻¹ region. The times are the same as for the top frame. Bottom: The same solution after 4, 24, and 56 h. The 1645-cm⁻¹ band increases, the 1556cm⁻¹ band decreases, and new peaks appear at 1538, 1531, and 1495 cm⁻¹ due to decomposition of d_{12} -Co^IL⁺.

cm⁻¹ absorbance is first order in [Co^IL⁺] with a rate constant (k_{obs}) of $(5 \pm 1) \times 10^{-4} \text{ s}^{-1}$ at (23 ± 1) °C. About half as rapidly, exchange of macrocycle C-H occurs, as well: the 1571-cm⁻¹ band shifts toward 1556 cm⁻¹ and then decreases in intensity.¹⁷ Similar results are obtained starting with the meso cobalt(II) isomer¹⁸ $(k_{obs} = (6 \pm 1) \times 10^{-4} \text{ s}^{-1}; \text{ initial } [Co^{I}L^{+}] = 0.061 \text{ M}).$ The less reducing octamethyl derivative Co^IL'+ undergoes H/D exchange about a factor of 20 more slowly $(k_{obs} = (3 \pm 0.5) \times$ 10^{-5} s⁻¹ for N-H/N-D exchange). By contrast, with C₃H₇CN as solvent, the intensities of the 1570- and 3200-cm⁻¹ bands did not change over 3 h. $Co^{1}L^{+}$ prepared by ≥ 1 -h bulk electrolysis (Pt electrode, 0.1 M tetrapropylammonium perchlorate) in CD₃-CN also undergoes deuteration ($\nu_{C=N} = 1556 \text{ cm}^{-1}$).

0020-1669/94/1333-1729\$04.50/0 © 1994 American Chemical Society

H/D exchange is also evident in the ¹H NMR spectra. ¹H NMR spectra of cobalt(I) solutions generated from rac-Co^{II}L- $(ClO_4)_2$ and meso-Co^{II}L $(ClO_4)_2$ in CD₃CN are identical because of rapid formation of an $(85 \pm 5)\%$: $(15 \pm 1)\%$ equilibrium mixture of two isomers.⁹ At room temperature the Co^IL⁺ imine methyl resonance at 1.45 ppm is broad and overlaps the N-H signal at 1.47 ppm but sharpens when the temperature is reduced to 260 K. Starting within 15 min after the reduction of rac-Co^{II}L(ClO₄)₂ in CD₃CN, the ¹H NMR spectra were monitored for 1 h at room temperature. The intensity of the N-H proton decreased, while the intensity of the CHD₂CN peak increased by 2.2 ± 0.6 protons per Co^IL⁺ as estimated from the peak integration. The intensity of the 1.45-ppm methyl resonance decreased more slowly. H/D exchange was confirmed in experiments in which 2,2'-bipyridine (bpy) was used as calibrant. After ¹H NMR measurement of the CHD₂CN integral with 0.07 M bpy as internal standard, the solvent was vacuum-transferred into a known amount of CoIIL2+ and Na-Hg. The Co¹¹L²⁺ was reduced to Co¹L⁺ (0.08 M) and filtered as always⁹ from the Na-Hg, and 6 h later, the solvent was back-transferred to the original NMR tube containing bpy for another NMR measurement. The solvent CHD₂CN peak had increased by 11 ± 1 protons per cobalt in intensity.

While the N-H groups of Co(II) and -(III) macrocycles readily exchange with D₂O neither rac-, meso-Co¹¹L nor Co¹L-CO₂ undergoes N-H proton exchange with CD₃CN. The rapid exchange of the two N-H protons, followed by slower exchange of C-H protons, is reminiscent of behavior found for NiL²⁺: for NiL^{2+} , the imine methyl and the 6- and 13-methylene protons are readily deuterated in basic $D_2O_1^{19-21}$ A sample of d_{12} -Ni^{II}L- $(ClO_4)_2$ prepared in basic D₂O showed no v_{NH} intensity (v_{ND} = 2363 cm⁻¹), and $\nu_{C=N}$ was shifted from 1660 to 1651 cm⁻¹. The shift of $\nu_{C=N}$ from 1571 to 1556 cm⁻¹ for Co^IL⁺ is also attributed to deuteration of the imine methyl and 6- and 13-methylene positions of the macrocycle, consistent with the exchange of 11 \pm 1 protons determined by NMR.

H/D exchange of CoL⁺ with CD₃CN is particularly striking because acetonitrile is such a weak acid: the pK_a of CH₃CN in CH₃CN is 29.1.²² In CoL⁺ there are both basic and acidic sites which could be relevant in the exchange pathway. Protonation of rac-CoL⁺ in water gives hydride complexes with pK_a values of ~11.5, ^{12,13} which corresponds to a pK_a of ca. 20 in acetonitrile.²³ Thus the equilibrium constant for deprotonation of CD₃CN by CoL^+ (eq 1) could be 10^{-9} M. The pK_a of the macrocycle amine

$$CoL^{+} + CD_{3}CN \rightleftharpoons CoL(D)^{2+} + CD_{2}CN^{-} \qquad K_{H} \quad (1)$$

$$CoL^{+} + CD_{3}CN \rightleftharpoons CoL(-H)^{+} + CD_{3}CNH^{+}$$
 (2)

(16) Our observations are in fair agreement with those of Summers, who also measured IR spectra of the perprotio CoIL+ complex in CD3CN.11 The macrocycle numbering scheme is as follows:

- (17) Over several hours the 1650-cm⁻¹ band increases, the 1556-cm⁻¹ band decreases, and new peaks appear at 1538 and 1531 cm⁻¹ due to decomposition of $Co^{I}L^{+}$. Complete decomposition takes more than 1 day under these conditions.
- (18) Szalda, D. J.; Schwarz, C. L.; Endicott, J. F.; Fujita, E.; Creutz, C. Inorg. Chem. 1989, 28, 3214–3219.
- Warner, L. G.; Rose, N. J.; Busch, D. H. J. Am. Chem. Soc. 1968, 90, (19) 6938--6946.

- (20) Barefield, E. K.; Busch, D. H. Inorg. Chem. 1971, 10, 108.
 (21) Ito, T.; Busch, D. H. Inorg. Chem. 1974, 13, 1770.
 (22) Bordwell, F. G.; Mathews, W. S. J. Am. Chem. Soc. 1974, 96, 1216-1217.

N-H group (eq 2; conjugate base $CoL(-H)^+$) is not known but could be as low as 13 in water, perhaps 19-20 in CH₃CN.²⁴ Since the reactivity of CoL⁺ toward metal-centered proton transfer from neutral nitrogen and oxygen acids in aqueous media is great,^{12,13,15} a simple proton-transfer mechanism initiated in eq 1 would seem possible. However, if exchange simply involves an equilibrium deprotonation, other bases of similar basicity would be expected to induce exchange between the conjugate acid (e.g. $CpRe(CO)_2H_2$ or $H(CH_3)Os(CO)_4^{24}$ and acetonitrile. Such exchange has not been reported.

To test this issue, we sought evidence for proton exchange of CD_3CN with an acid/base pair with a pK comparable to that of the cobalt macrocycle. The pK_a of 1,1,3,3-tetramethylguanidinium ion (TMGH⁺) ($pK_a = 13.6$ in water) is 23.3 in acetonitrile,25 and like other nitrogen-centered systems, this pair exhibits high proton-transfer reactivity. However, no exchange between CD₃CN and 20 mM TMGH⁺/100 mM TMG or 0.2 M TMGH⁺/1.3 M TMG was found at 23 ± 1 °C over 1 month. The failure of CD₃CN to exchange with TMG/TMGH⁺ and other B/BH⁺ pairs of high basicity undoubtedly reflects the high intrinsic barrier of CH₂CN⁻/CH₃CN with respect to proton transfer. The intrinsic reactivity of CoL⁺ with respect to proton transfer is high but no greater than that of N-centered species such as TMG. Thus exchange with CoL⁺ must involve another mechanism.

One possibility is suggested by studies of C-H activation.^{26,27} Acetonitrile is readily metalated by electron-rich [Ir(PMe₃)₄]Cl to form cis-[Ir(H)(CH₂CN)(PMe₃)₄]Cl with $t_{1/2} \sim 10 \text{ min.}^{28}$ Oxidative addition of the methyl group of CH_3CN to the Co(I)complex would result in the formation of the cobalt-carbon bond in the metalated $Co^{III}L(D)(CD_2CN)^+$ species, and H/D exchange could occur via a sequence such as that shown as follows:²⁹

Hopefully, future mechanistic studies of the cobalt systems will clarify the nature of the exchange mechanism for these complexes.

Acknowledgment. We thank Drs. M. Andrews, B. Brunschwig, R. M. Bullock, J. R. Norton, and N. Sutin for helpful discussions. This work was carried out at Brookhaven National Laboratory under Contract DE-AC02-76CH00016 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences.

- (23)Coetzee, J. F.; Padmanabhan, G. R. J. Am. Chem. Soc. 1965, 87, 5005-5010.
- Kristjansdottir, S.S.; Norton, J.R. In Transition Metal Hydrides; Dedieu, (24)A., Ed.; VCH: New York, 1992; pp 309-359.
- Kolthoff, I. M.; Chantooni, M. K.; Bhowmik, S. J. Am. Chem. Soc. (25)1968, 90, 23-28.
- 1968, 90, 23–28.
 Reviews: Crabtree, R. H. Chem. Rev. 1985, 85, 245. Brookhart, M.;
 Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36, 1. Papers:
 Crabtree, R. H.; Mellrea, M. F.; Mihelcic, J. M.; Quirk, J. M. J. Am.
 Chem. Soc. 1982, 104, 107. Jones, W. D.; Feher, F. J. J. Am. Chem.
 Soc. 1984, 106, 1650. Stoutland, P. O.; Bergman, R. G. J. Am. Chem.
 Soc. 1985, 107, 4581. Stoutland, P. O.; Bergman, R. G. J. Am. Chem.
 Soc. 1985, 107, 4581. Stoutland, P. O.; Bergman, R. G. J. Am. Chem. (26)Soc. 1988, 110, 5732. Albeniz, A. C.; Heinekey, D. M.; Crabtree, R. H. Inorg. Chem. 1991, 30, 3632
- (27) Ittel, S. D.; Tolman, C. A.; English, A. D.; Jesson, J. P. J. Am. Chem. Soc. 1978, 100, 7577-7585
- English, A. D.; Herskovitz, T. J. Am. Chem. Soc. 1977, 99, 1648.
- "Intramolecular" exchange of N-H protons with those bonded to carbon (29) atoms α to the imine could occur through the following isomerization:

This is promoted by the electron-rich cobalt(I) which donates considerable charge to C=N, as is evident from the unusually low value of ν_{CN} .